If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8^2x-1=1/64
We move all terms to the left:
8^2x-1-(1/64)=0
We add all the numbers together, and all the variables
8^2x-1-(+1/64)=0
We get rid of parentheses
8^2x-1-1/64=0
We multiply all the terms by the denominator
8^2x*64-1-1*64=0
We add all the numbers together, and all the variables
8^2x*64-65=0
Wy multiply elements
512x^2-65=0
a = 512; b = 0; c = -65;
Δ = b2-4ac
Δ = 02-4·512·(-65)
Δ = 133120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{133120}=\sqrt{1024*130}=\sqrt{1024}*\sqrt{130}=32\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{130}}{2*512}=\frac{0-32\sqrt{130}}{1024} =-\frac{32\sqrt{130}}{1024} =-\frac{\sqrt{130}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{130}}{2*512}=\frac{0+32\sqrt{130}}{1024} =\frac{32\sqrt{130}}{1024} =\frac{\sqrt{130}}{32} $
| -p/3=6 | | -3(4y+1)-4(1-y)=3(3y+1)-6 | | 0.5^n=50 | | 40/1000=25/x | | x=21+3x | | 3p-7+p=14 | | 2(4x+3)+2x=5(2x+5) | | -7x-11=-19 | | 5(8x+9)=15 | | 2x/2=35/2 | | 25x^2-16x-41=0 | | 3(2p-7)-3(5p+1)=2-3(p+3) | | 1-6(x+2)=7 | | (2x-1)+(x-1)=x+2 | | 3(2y-2)+14=6(y-1)-(1y+4) | | 9-x=14-7 | | 4+6(2+x)=2(3×+8) | | 5(3+t)=3(4t-1)-45 | | 4+2x=5x-15 | | 16(3m-5)-10(4m-8)=40 | | 10y-7=6 | | (3-X)=(3-x)2 | | 4(3p+1)-7=1 | | 5(2y+15)=25 | | 2=4n-2 | | 7x=8-5x | | 5+2(3+2x)=×+3(×+1) | | (15x-135)-(2x-24)+(5x+30)=0 | | (2x-3)/3=(3x+6)/4 | | (15x-135)-(2x-24)+(+30)=0 | | 4u-2=8u-2 | | X+78x/3=17/6-5x/8 |